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Lattice-independent approach to thermal phase mixing
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We show how to achieve lattice-spacing-independent results in numerical simulations of finite-temperature
stochastic scalar field theories. We generalize a previous approach by obtaining results which are independent
of the renormalization scale. As an application of our method, we examine thermal phase mixing in the context
of Ginzburg-Landau models with short-range interactions. In particular, we obtain the lattice-spacing and
renormalization-scale-independent critical value of the control parameter which determines the free-energy
barrier between the two low-temperature phases. We also propose a simple procedure to extract the critical
value of control parameters for different choices of lattice spacing.

PACS numbgs): 05.10—a, 05.70.Jk, 11.10.Wx

[. INTRODUCTION lattice-spacing independent, as long as proper counterterms
are added to the lattice effective potential. Following a sug-

During the past decade, the study of equilibrium and nongestion by Parisi[5], lattice-spacing-independent results
equilibrium dynamics of field theories has greatly benefitedvere recently obtained by Borrill and one of us within the
from the widespread availability of workstations capable ofcontext of finite-temperature symmetry restoration in a
millions of floating point operations per CPU second. simple Ginzburg-Landau modgb]. However, that study fo-

One of the most popular applications of computers in thecused on a regime where the large temperatures needed for
physical sciences is the examination of phenomena that asymmetry restoration compromised the approach to obtain
generated by nonperturbative effects. These include nonlinattice-spacing-independent results, which is based on a per-
ear dynamical systems with a few, several, or an infiniteurbative expansion in powers of the temperature. Further-
number of degrees of freedom. Of these, we are particularlynore, no attempt was made to obtain results that were inde-
interested here in the latter, as they represent a unique chaglendent of the renormalization scale. Thus, in that study, the
lenge to computational physics. Implementing field theoriemumerical prediction for the critical temperature depends on
in the computer implies discretizing not only time but alsothe particular choice of renormalization scale.
space: the system is cast on a finite lattice with a discrete Here, we would like to apply an expanded version of the
spatial step, effectively cutting off the theory both in the method proposed in Rdf6] to a related problem, phase mix-
infrared (by the lattice sizeand in the ultraviolettby the ing in Ginzburg-Landau models. The distinction between
lattice spacing Although in classical field theories an ultra- phase mixing and symmetry restoration is made clearer
violet cutoff solves the Rayleigh-Jeans ultraviolet catastrothrough the following argument. Suppose a system described
phe, the solution comes with a high price tag: whenever therby a Ginzburg-Landau free energy density watthd powers
is dynamical mixing of short and long wavelength modes,of the order parametep(t,x) is rapidly cooled from a high
the results will in general depend on the shortest distanceemperature to a temperature where two phases can coexist.
scale in the simulation, the lattice spacing. To be sure, inmrhe system was cooled so as to remain entirely in one of the
many instances this dependence on small spatial scales dag# phases. The odd tefs) could be due to an external
not affect qualitatively the physics one is interested in: formagnetic field(linear term, or to the integration of other
example, very near criticality for Ising systems, where spatiafields coupled tap, as in certain gauge theoriésubic term)
correlations in the order parameter divefds, or are con- [7], or in de Gennes—Landau models of the nematic-isotropic
trollable in some way?2]. However, in many other cases one transition in liquid crystal$8]. Due to the odd terms, there is
is interested in achieving a proper continuum limit on thea free-energy barrier for large-amplitude fluctuations be-
lattice that is independent of the choice of ultraviolet cutoff.tween the two phase§Of course, small-amplitude fluctua-
These include a wide range of phenomena that have trigions within each phase are also possible, but less interest-
gered much recent interest, from pattern formation in fluiding.] This barrier is usually controlled by the coefficients of
dynamics[3] to simulations of phase transitions and topo-the odd terms in the Ginzburg-Landau model, which we will
logical defect formation, which often use stochastic methodgall the control parametés).

[4]. Suppose now that the system is held at the temperature

In the present paper, we are concerned with curing, or aivhere the two phases have the same free energy densities
least greatly alleviating, the lattice-spacing dependence th@&sometimes called the critical temperature in the context of
appears in stochastic simulations of scalar field theories. Wdiscontinuous phase transitionand that we are free to
will show that it is indeed possible to obtain results that arechange the value of the control paramé&terThe question

we would like to address is how does the system behave as a

function of the control paramefigj, that is, as the free-
*Electronic address: carmen.gagne@dartmouth.edu energy barrier for large-amplitude fluctuations between the
TElectronic address: marcelo.gleiser@dartmouth.edu two phases is varied. As is well known, the mean-field
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theory approach breaks down when large-amplitude fluctua- At the critical temperatureT2=T5/(1—2a?/9a\), the
tions about equilibrium become large enough. Thus, weystem exhibits two degenerate free energy minima at
should expect that the prediction from the Ginzburg-Landau

model, that the system remains localized in one phase until 2aT,

the barrier disappearsvhen the control parameter goes to ¢=0 and ¢, =——, 3
zerog will eventually be wrong. There will be a critical value

for the control parameter beyond which nonperturbative efwhile at the temperaturd, the barrier between the two
fects lead to the mixing of the two phaséNote that due to phases disappears. Throughout this paper, we will be inter-
the odd terms, there is no symmetry to be restgredthe  ested in the behavior of the systeniat One reason for this
language of the Ginzburg-Landau model, the system shouldhoice has to do with the use of a perturbative expansion,
at this point be described as having a single well, centered athich is in powers ofT; at T, the expansion parameter is
the mean value of the order parameter. We would like tosufficiently small, allowing us to stay at 1 loop. Another
obtain the lattice-independent critical value of the controlreason is that we are interested in measuring the breakdown
parameter for this phase mixing to occur. of mean-field theory in terms of parameters controlling the

It is important to distinguish between phase coexistencdree-energy barrier, and the calculations are much simpler at
and phase mixing. As is well-known, phase coexistence willT., as we will see next.
generally occur when a system is cooled into the so-called According to the model described by E®), at T, un-
phase coexistence region of the phase diagram. In this cadessa=0 (or A — =) there will always be a barrier separat-
the system will relax into its lowest free-energy configura-ing the two phases: at;, this model does not predict phase
tion via spinodal decomposition. Here, we are preparing thenixing to occur. It is thus very convenient to introduce the
system initially outside the phase coexistence region, namelghifted field
in one particular phase only. In the infinite-volume limit,
mean field theory predicts the system will remain there, , Ta
since, as the two minima are degenerate, the nucleation of a b—d'=d- BN @
critical droplet would cost an infinite amount of free energy.

Phase mixing is a nonperturbative phenomenon characteand write the shifted homogeneous free energy density as
ized by large-amplitude fluctuations not included in the(dropping the primes

mean-field approach. It signals the breakdown of mean-field
theory.

This paper is organized as follows: In the next section, we
describe the continuum model we use and some of its prop-
erties. In Sec. Ill we describe the lattice implementation andvith
how simulations using a bare lattice potential give results > 2
that depend severely on the lattice spacing. In Sec. IV we 2TV _ A(T2_ T2 T_“

: pA(T)=—-a(T*=Ty)+ , (6)
show how to cure this dependence, and also how to make the 3\
simulations independent of the choice of renormalization
scale. We conclude in Sec. V with a brief summary of our@nd
results and a discussion of future work.

V(¢)=—1 2(T) 2, N 44 A(T)é+ constants, (5
0 oM ¢ 4¢ (T) ¢+ constants, (5)

3.3
AT)=am -1y % 2 T
273N 27 )2

7
Il. THE MODEL IN THE CONTINUUM 0

Our starting point is the two-dimensional Hamiltonian, The shifted free energy density is just the usual Ginzburg-
(we usec=kg=1) Landau free energy density with an external magnetic field
A(T). Note thatA(T.)=0 and the two minima are degener-
H 1 1 . ; .
Erd)] _ ?J dzx[E(V¢~V¢)+V(¢) ' ) ate, as they should be. We now introduce the dimensionless

variables6=T/T,, T=aT,t, x=\aT,x, ¢=¢/\T,, ac-

H H H — _ 957210\ 1-1/2
where the homogeneous part of the free energy density is cording to which we can write, &c=[1—2a"/9\] ™,

~ 1. ~, 1.
Vid)= 2T TYai- STH 2t @) Vo= Si200 3+ X8, ®)

This choice ofV(¢) is inspired by several models of nucle- wherex=\/aT,, a=ala\T,, and

ation in the condensed mattf9] and high-energy physics

literature, in particular in recent models of the electroweak ~ w? ) 2o’

phase transitiofi7]. The several parameters \(¢) allow K= aT, —(6—1)+ 5 9
one to apply it to several situations of interest. However, we
note that here the order parameter is a scalar quantity, a . ~
thus the critical behavior Fz)f this model belongsqto theyuni- ince we will keep tbe syftem die(a,)), the only_ tV\_IO
versality class of the two-dimensional Ising mo@&0,6]. It Eontrol parameters are and\. In what follows, we will fix

is quite straight forward to generalize our results to systema = 0.1 for simplicity. This was also the choice in a previous
in different numbers of spatial dimensions. study of phase mixing in the same system, which did not
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address the issue of lattice-spacing dependghtie We will 5 A B S B B B
also drop all tildes, except in the plots and captions, where [ —— 06x=1.0 X=0.45
unshifted, dimensionless variables are used and marked e» I 0x=0.8 :
licitly. I .
PICY 08| e .
I1l. NUMERICAL RESULTS: BARE LATTICE /

A. Description of the simulation 06
As mentioned in the Introduction, we would like to study L

the behavior of the system described in the previous sectior-e- - .
when coupling to an external thermal bath promotes fluctua- v !

tions about equilibrium. We will consider the situation where 04 1
the system is initially prepared in the phase given/by0 in ¥
the unshifted potential or, more generically, the left well. o
Since we are only interested in the final equilibrium value of 't
the system, we will simulate the coupling of the scalar field

¢ to the thermal bath using a generalized Langevin equation I |

) ap Vg
R v Y SR S T R R SR
at? Ve o d¢ e, (10 O'oo 20 40 60 80 100

0.2 _1‘ -
1
[

™

where the viscosity coefficieny, set equal to unity in all o
simulations, is related to the stochastic force of zero mean FIG. 1. (¢)(t) for the bare potential, for several choices of

&(x,t) by the fluctuation-dissipation relation, lattice spacing, forx=0.45.

t ")) =27n08(x—x")6(t—t"). 11 . . )
<§(X )&(x )> 705(x=x") ) 19 B. Results from bare lattice simulations

The system is discretized and put on a square lattice with ) -
side lengthL, equal to 64 for all the simulations, but several ~ Keeping the system always at the critical temperatifre
lattice spacingsgx, and time stepsgt, are used. Fowx  We are interested in its behavior as the free-energy barrier
=1.0, 0.8, and 0.2 the respective time stepsare0.2, 0.1, between the two equilibrium phases is changed. We will
and 0.02. We have, of course, checked the stability of théneasure the value of the ensemble-averaged and area-
program for these choices of lattice parameters. Using a sta@veraged order paramel{aﬁ)A(t)E1/Afd2x¢>(x,t) for sev-
dard second-order staggered leapfrog mettvatich is sec- eral choices of the lattice spacid, taking note of its final

ond order in both space and tijnee can write, equilibrium value, ¢e,. In Fig. 1 we show the results for
: (@) a(t) for several choices of lattice spacing aae-0.45.
bi.m+1/2 The dependence on lattice spacing is quite evident; different

lattices produce different physics.
In Fig. 2, we show the phase diagram depicting phase

1 )
1— =76t | i m_ 1ot SU(V2di m—Vi(bi m) + &
( 27 )¢"m vzt UV bim= Vol Sim) + & m) mixing as a function ofx for different choices of the lattice

- 1 spacingéx. The phase diagram is constructed by defining the
1+ 2 7ét “phase-mixing order parameter,”
¢i,m+1:¢’i,m+&¢i,m+1/2 (12 5¢(Q)E|$eq_ Bmad! Pmaxs (15

wherei indices are spatial anch indices temporal, overdots

represent derivatives with respect t@nd primes with re-  \\here ¢, —af/3\ is the location of the maximum of the

spect to¢. The discretized fluctuation-dissipation relation free energy density separating the two phases. Clearly, as

now reads decreases, the free-energy barrier decreases and larger-
amplitude fluctuations between the two phases become more

(gi,mgj,n>=27;9i'12 5;‘”, (13)  probable. Below a critical value, ¢eqjust tracks the lo-
cation of the maximum, indicating complete phase mixing,
or the breakdown of the mean field theory of Ef).

so that The problem, though, is that phase mixing, or the break-
down of mean-field theory, occurs for values @f, which
& = / 270 G (14) are strongly dependent on the value &f, as can be seen
hm sxest M from Fig. 2. For the range ofx investigated, 0.& Sx<1,
we obtained 0.355 «.=<0.40. In the next section, we argue

whereG; , is taken from a zero-mean unit-variance Gaussthat this dependence can be effectively cured by including
ian. proper counterterms to the lattice potential.
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L L behavior can be used to regulate this dependgtigle As we
FO06x=1.0 ] will further argue below, for our purposes we can safely set
i A6g=0.8 1 A =0. This is not the case for the ultraviolet cutoff. The
0.8 '_05X=0-2 n| ] reader can see now why it is useful to use the shifted poten-
; EE tial of Eq. (5) as opposed to the original one of E@): all

- g E i divergences are quadratic éy simplifying the computations
od i considerably, while the physical results, of course, remain
0.6 - A O - unchanged. This is why we added only the countertBi?

O { above.

- - O . The counterternB is computed by imposing the renor-

- ] malization condition

04 ... O . -
. Mixed G, Unmixed. V2 (hrn) = Vi hrn) = M2, (19)

> O

0z whereM is the arbitrary renormalization scale and we write

a drn=V(MZ+ ?)/3\. [Note thatM here is dimensionless
L A O . (tilde is droppedi being defined aé = M/T,.] One obtains,

0.0 —9999@@9000 - ;
| I TR T T N T ST SR SR (NN TR WO SO S SN SR S S = n -
0.30 0.35 0.40 0.45 0.50 B(M)= 16m Vo'In AZ A

> =drn

I!

( Vm 2

(19

FIG. 2. Phase diagram for the bare potential for various lattice Applying this to the shifted potential of E@5), we ob-
spacings. tain, for the 1-loop renormalized continuum potential,

IV. APPROACHING THE CONTINUUM ON THE LATTICE
1 )N 9 3N Ou?
_ _ . . VI (p)=| — S p?+ ¢+ ¢4+A¢
A. Computing the lattice effective potential 1L 2 mot 877 477 M2
Setting up a continuum system on a lattice introduces two 5 )
artificial length scales, the ultraviolet momentum cutaff _ 3)\6¢>2In “KTE3NP
=7/ 6x and the infrared momentum cutoff, = /L, where 8w M2

L is the lattice size. In the continuum limit,— o0, and &x 2
—0 or, equivalently, the number of degrees of freeddm I 2 2
=(L/6x)9—c. The coupling to the thermal bath induces T g N~ w7+ 3Ng7) Fconstants.  (20)
fluctuations at all allowed length scales. We should thus ex-
pect that the lattice simulation is related to a continuum Recall that at. the linear term proportional t&(#) van-
model with both infrared and ultraviolet cutoffs. In order to ishes. Since the counterterm cancels the dependence on the
obtain the lattice effective potential, we start by analyzingultraviolet cutoff, we define the lattice effective potential as
the divergences of the related continuous model. [6]

For classical field theories in two dimensions, the corre-
sponding 1-loop corrected effective potential is given by Vian( ) =Vo($) +B(M) ¢2. (21)

dp ,, In Fig. 3 we show the results of repeating the simulations of
Vi(9)=Vo(d)+ EJA (27)2In(p2+Vo)+counterterms, Fig. 1 but now adding the counterterm to the lattice simula-
' (16)  tions following Eq.(21). The addition of the counterterm
practically eliminates the lattice-spacing dependence of the
where the primes denote derivatives with respeaptd®er-  results. Figure 3 also shows the near elimination of lattice-
forming the integration and making all variables dimension-spacing dependence far=0.40.
less we obtain,

2 "
AT+ Vq
A2

0
Vi(d)=Vo(é)+ g V" 1-1In In Figs. 4 and 5, we show the phase diagrams usipg

) 1 B. Extracting the critical value of the order parameter
defined in Eq(15) as a function ofx for different choices of

0 lattice spacingdx. These are to be compared with Fig. 2.
- ﬁAf In(AZ+Vp)+B¢?+ constants. Figure 4 is for a choice of renormalization scMe=1, while
Fig. 5 is forM=10. It is clear that the results for different
17 lattice spacings converge around one valuexof

. . _ We computea, as follows: for a given value o& we
The infrared cutoff does not introduce a divergenceAgas rform severali m rement 05 by varving th
—0, but it does introduce finite corrections\q , or finite perform severalif,) measurements abe, by varying the

size effects, which become small hsncreases. These be- lattice spacing, which we Caﬂ’eq(a) Their average is sim-
come more severe near criticality, but well-known scalingply ((l)e(q(a)) [ maxqﬁeq(a)]/lmax, while the departure from
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FIG. 3. ($)(t) with the counterterm added arld=1, for
several choices of lattice spacing, fer=0.45 anda=0.40.

the average for each measurement

= |$eq_ <$eo>|/<geo>-

Near criticality, the results are naturally poorer due to th

. . . . &
existence of long-range correlations in the field. We can use
this fact to our advantage, since we expect that, at criticality;”
the departure from the average defined above is maximize

that is, the quantity

2 Adly
<A¢eq(a)>fv,

L L
F06%=1.0 N
- AEX=0.8 M=
08'06§=0.2 5
8y @@9
- (2]
i (2]
0.6 - @Q
< | ®
al ... @) ) i
®4 Mixed A Unmixed.
- O
02 -
S
0o LOABRE A
T YN WA TR NN TR ST SN T N T SUNT N SN
0.30 0.35 0.40 0.45
ot

FIG. 4. Phase diagram fov=1.

1.0 I T T T T I T T T T I T T T T ’I\JI T T T I
r06x=1.0 _ 1
- A§%X=0.8 M=10 |
- 06%=0.2 1
0.8 —
0.8 - QQ —
o | & -
«< | i
04 @ —

K . [m] .

| Mixed ) Unmixedj
i 0 |
0.2 —
i o |
L [m} i
L o 4
0.0 - faYaYaYaYa)adabaid -

T YN WA TR T TN ST SN WA NN TN ST T S N S W SN R
0.30 0.35 0.40 0.45 0.50

(o]

FIG. 5. Phase diagram fdvl =10.

reaches a maximum at.. This can be clearly seen from
Fig. 6 for the same choices of lattice spacirigs coarse-
graining scalesas in Figs. 4 and 5. The measured value of
. is now a.=0.365-0.005, for M=1, and «.=0.435
+0.005 forM =10.

We have thus achieved lattice-spacing independence on
(tjﬁe measurement of.. Clearly, the error ina, could be
further decreased by taking a larger number of measurements
of ¢:3q. However, since our main goal here is to show the
convergence of the results for different lattice spacings, we
are not concerned with very high-accuracy measurements.
Nevertheless, the values fat, still depend on the renormal-
ization scale, which is arbitrary. In the next subsection, we
show how to obtain lattice results that are independem.of

C. Achieving independence of renormalization scale
on the lattice

As with conventional renormalization theory, the renor-
malized potential should not depend on the choice of renor-
malization scal¢13]. One usually solves the renormalization
group equations to find how the couplings vary with the
scale. Here, we propose a simpler approach that works quite
well on the lattice implementation of scalar field theories. It
is an interesting question how to generalize it to more com-
plex models.

Consider the 1-loop renormalized potent}al"L(¢) as
given in Eqg.(20). The superscripM is a reminder that this
potential is renormalized at a given scale Now consider
an equivalent potential renormalized at another sdale
V'}"L(q&). Since the divergences are quadratic, this potential
has a shifted masg’2. By imposing that the two potentials
are identical VY, (#)=V),(¢), we obtain a condition on

the shifted massu’?, approximating Infu'?+3\M’)
~In(— x2+3\M),
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FIG. 6. (Agefa)) for M=1 andM =10, with the respective
a.'s at the maxima.

FIG. 7. Phase diagram fdv’ = 10.

M/Z
M2

3N0

3N Ou?
M12:M2+ In — ®

2

1 1

M2 MIZ

(23

Thus, we can always relate a theory with a choicéviofo
any other theory wittM’ by redefining the masg? accord-

The results were presented in terms of phase diagrams
which clearly illustrate the effectiveness of our approach. We
also proposed a simple way of determining the critical value
of the control parameter for phase mixing, which uses the
spread in values of the equilibrium order parameter around
criticality for different choices of lattice spacing@r coarse-
graining scales Thus, we effectively turn a weakness of

ing to Eq.(23). We claim that this is also the case for the lattice simulations into a strength, something that can be use-

lattice effective potential.

As an illustration, we show the phase diagram Kot
=10 in Fig. 7, where the results fo ' =10 were obtained
after scalingu? according to Eq(23) in the lattice potential

ful for the examination of critical phenomena of continuous
field theories in fairly small lattices.

We plan to expand the present study to investigate the
effects of spatio-temporal memory on the dynamics of non-

of Eq. (21). It is practically indistinguishable from the phase

diagram forM =1 shown in Fig. 4. Figure 8 demonstrates 0.24
clearly thatM’ =10 has the identicat. previously found for

M =1, within our level of accuracy. This is in stark contrast

to Fig. 6, where the values af, for M=1 andM =10 were

very different, as evidenced by its “twin peaks” structure.

V. SUMMARY AND OUTLOOK

We have investigated the continuum limit of lattice simu- %<
lations of stochastic scalar field theories. In particular, we %,
have proposed a method to obtain not only lattice-spacinc-e-
independent results, but also results independent of the
renormalization scale of the lattice effective potential. We 0.08
illustrated our approach by examining a Ginzburg-Landau
model which exhibits phase mixing depending on the values
of the parameters controlling the free-energy barrier for
large-amplitude fluctuations between the two low-
temperature phases in our model. Thermal fluctuations of the
order parameter are induced by coupling it to a thermal batr 4 4
at fixed temperaturd ., defined as the temperature where

[Tt N T
L O oM=1 J

- AM'=101

0.16_— —-

—~ [ A ]
- o o

B A ]

L A |

I o ]

[ % ]

L o .

I @@ 0@ ]

_?Qé |@oé@z|& 1 ]

0.30 0.35 0.40 0.45 0.50

ot

the two phases have the same free energy density. We simt
late the dynamics using a generalized Langevin equation

with Gaussian noise, which brings the system to its final FIG. 8. (Aqseq(?z)) for M=1 andM’=10 showing the same
equilibrium state. value of a .
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