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Lattice-independent approach to thermal phase mixing

Carmen J. Gagne* and Marcelo Gleiser†

Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755
~Received 13 October 1999!

We show how to achieve lattice-spacing-independent results in numerical simulations of finite-temperature
stochastic scalar field theories. We generalize a previous approach by obtaining results which are independent
of the renormalization scale. As an application of our method, we examine thermal phase mixing in the context
of Ginzburg-Landau models with short-range interactions. In particular, we obtain the lattice-spacing and
renormalization-scale-independent critical value of the control parameter which determines the free-energy
barrier between the two low-temperature phases. We also propose a simple procedure to extract the critical
value of control parameters for different choices of lattice spacing.

PACS number~s!: 05.10.2a, 05.70.Jk, 11.10.Wx
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I. INTRODUCTION

During the past decade, the study of equilibrium and n
equilibrium dynamics of field theories has greatly benefi
from the widespread availability of workstations capable
millions of floating point operations per CPU second.

One of the most popular applications of computers in
physical sciences is the examination of phenomena that
generated by nonperturbative effects. These include non
ear dynamical systems with a few, several, or an infin
number of degrees of freedom. Of these, we are particul
interested here in the latter, as they represent a unique c
lenge to computational physics. Implementing field theor
in the computer implies discretizing not only time but al
space: the system is cast on a finite lattice with a disc
spatial step, effectively cutting off the theory both in th
infrared ~by the lattice size! and in the ultraviolet~by the
lattice spacing!. Although in classical field theories an ultra
violet cutoff solves the Rayleigh-Jeans ultraviolet catas
phe, the solution comes with a high price tag: whenever th
is dynamical mixing of short and long wavelength mod
the results will in general depend on the shortest dista
scale in the simulation, the lattice spacing. To be sure
many instances this dependence on small spatial scales
not affect qualitatively the physics one is interested in:
example, very near criticality for Ising systems, where spa
correlations in the order parameter diverge@1#, or are con-
trollable in some way@2#. However, in many other cases on
is interested in achieving a proper continuum limit on t
lattice that is independent of the choice of ultraviolet cuto
These include a wide range of phenomena that have
gered much recent interest, from pattern formation in fl
dynamics@3# to simulations of phase transitions and top
logical defect formation, which often use stochastic meth
@4#.

In the present paper, we are concerned with curing, o
least greatly alleviating, the lattice-spacing dependence
appears in stochastic simulations of scalar field theories.
will show that it is indeed possible to obtain results that
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lattice-spacing independent, as long as proper counterte
are added to the lattice effective potential. Following a su
gestion by Parisi@5#, lattice-spacing-independent resul
were recently obtained by Borrill and one of us within th
context of finite-temperature symmetry restoration in
simple Ginzburg-Landau model@6#. However, that study fo-
cused on a regime where the large temperatures neede
symmetry restoration compromised the approach to ob
lattice-spacing-independent results, which is based on a
turbative expansion in powers of the temperature. Furth
more, no attempt was made to obtain results that were in
pendent of the renormalization scale. Thus, in that study,
numerical prediction for the critical temperature depends
the particular choice of renormalization scale.

Here, we would like to apply an expanded version of t
method proposed in Ref.@6# to a related problem, phase mix
ing in Ginzburg-Landau models. The distinction betwe
phase mixing and symmetry restoration is made clea
through the following argument. Suppose a system descr
by a Ginzburg-Landau free energy density withodd powers
of the order parameterf(t,x) is rapidly cooled from a high
temperature to a temperature where two phases can coe
The system was cooled so as to remain entirely in one of
two phases. The odd term~s! could be due to an externa
magnetic field~linear term!, or to the integration of other
fields coupled tof, as in certain gauge theories~cubic term!
@7#, or in de Gennes–Landau models of the nematic-isotro
transition in liquid crystals@8#. Due to the odd terms, there i
a free-energy barrier for large-amplitude fluctuations b
tween the two phases.@Of course, small-amplitude fluctua
tions within each phase are also possible, but less inter
ing.# This barrier is usually controlled by the coefficients
the odd terms in the Ginzburg-Landau model, which we w
call the control parameter~s!.

Suppose now that the system is held at the tempera
where the two phases have the same free energy den
~sometimes called the critical temperature in the contex
discontinuous phase transitions! and that we are free to
change the value of the control parameter~s!. The question
we would like to address is how does the system behave
function of the control parameter~s!, that is, as the free-
energy barrier for large-amplitude fluctuations between
two phases is varied. As is well known, the mean-fie
3483 © 2000 The American Physical Society
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3484 PRE 61CARMEN J. GAGNE AND MARCELO GLEISER
theory approach breaks down when large-amplitude fluc
tions about equilibrium become large enough. Thus,
should expect that the prediction from the Ginzburg-Land
model, that the system remains localized in one phase u
the barrier disappears~when the control parameter goes
zero! will eventually be wrong. There will be a critical valu
for the control parameter beyond which nonperturbative
fects lead to the mixing of the two phases.~Note that due to
the odd terms, there is no symmetry to be restored.! In the
language of the Ginzburg-Landau model, the system sho
at this point be described as having a single well, centere
the mean value of the order parameter. We would like
obtain the lattice-independent critical value of the cont
parameter for this phase mixing to occur.

It is important to distinguish between phase coexiste
and phase mixing. As is well-known, phase coexistence
generally occur when a system is cooled into the so-ca
phase coexistence region of the phase diagram. In this c
the system will relax into its lowest free-energy configu
tion via spinodal decomposition. Here, we are preparing
system initially outside the phase coexistence region, nam
in one particular phase only. In the infinite-volume lim
mean field theory predicts the system will remain the
since, as the two minima are degenerate, the nucleation
critical droplet would cost an infinite amount of free energ
Phase mixing is a nonperturbative phenomenon chara
ized by large-amplitude fluctuations not included in t
mean-field approach. It signals the breakdown of mean-fi
theory.

This paper is organized as follows: In the next section,
describe the continuum model we use and some of its p
erties. In Sec. III we describe the lattice implementation a
how simulations using a bare lattice potential give resu
that depend severely on the lattice spacing. In Sec. IV
show how to cure this dependence, and also how to make
simulations independent of the choice of renormalizat
scale. We conclude in Sec. V with a brief summary of o
results and a discussion of future work.

II. THE MODEL IN THE CONTINUUM

Our starting point is the two-dimensional Hamiltonia
~we usec5kB51)

H@f#

T
5

1

TE d2xF1

2
~¹f•¹f!1V~f!G , ~1!

where the homogeneous part of the free energy density

V~f!5
a

2
~T22T2

2!f22
a

3
Tf31

l

4
f4. ~2!

This choice ofV(f) is inspired by several models of nucle
ation in the condensed matter@9# and high-energy physic
literature, in particular in recent models of the electrowe
phase transition@7#. The several parameters inV(f) allow
one to apply it to several situations of interest. However,
note that here the order parameter is a scalar quantity,
thus the critical behavior of this model belongs to the u
versality class of the two-dimensional Ising model@10,6#. It
is quite straight forward to generalize our results to syste
in different numbers of spatial dimensions.
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At the critical temperatureTc
25T2

2/(122a2/9al), the
system exhibits two degenerate free energy minima at

f50 and f15
2aTc

3l
, ~3!

while at the temperatureT2 the barrier between the two
phases disappears. Throughout this paper, we will be in
ested in the behavior of the system atTc . One reason for this
choice has to do with the use of a perturbative expans
which is in powers ofT; at Tc the expansion parameter
sufficiently small, allowing us to stay at 1 loop. Anoth
reason is that we are interested in measuring the breakd
of mean-field theory in terms of parameters controlling t
free-energy barrier, and the calculations are much simple
Tc , as we will see next.

According to the model described by Eq.~2!, at Tc , un-
lessa50 ~or l→`) there will always be a barrier separa
ing the two phases: atTc , this model does not predict phas
mixing to occur. It is thus very convenient to introduce t
shifted field

f→f8[f2
Ta

3l
, ~4!

and write the shifted homogeneous free energy density
~dropping the primes!

V0~f!52
1

2
m2~T!f21

l

4
f41A~T!f1constants, ~5!

with

m2~T![2a~T22T2
2!1

T2a2

3l
, ~6!

and

A~T![a~T22T2
2!

Ta

3l
1

2

27

T3a3

l2
. ~7!

The shifted free energy density is just the usual Ginzbu
Landau free energy density with an external magnetic fi
A(T). Note thatA(Tc)50 and the two minima are degene
ate, as they should be. We now introduce the dimension
variablesu[T/T2 , t̃[AaT2t, x̃[AaT2x, f̃[f/AT2, ac-
cording to which we can write, atuc5@122ã2/9l̃ #21/2,

Ṽ052
1

2
m̃2~uc!f̃

21
1

4
l̃f̃4, ~8!

wherel̃[l/aT2 , ã[a/aAT2, and

m̃25
m2

aT2
52~uc

221!1
uc

2ã2

3l̃
. ~9!

Since we will keep the system atuc(ã,l̃), the only two
control parameters areã andl̃. In what follows, we will fix
l̃50.1 for simplicity. This was also the choice in a previo
study of phase mixing in the same system, which did
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address the issue of lattice-spacing dependence@11#. We will
also drop all tildes, except in the plots and captions, wh
unshifted, dimensionless variables are used and marked
plicitly.

III. NUMERICAL RESULTS: BARE LATTICE

A. Description of the simulation

As mentioned in the Introduction, we would like to stud
the behavior of the system described in the previous sec
when coupling to an external thermal bath promotes fluct
tions about equilibrium. We will consider the situation whe
the system is initially prepared in the phase given byf50 in
the unshifted potential or, more generically, the left we
Since we are only interested in the final equilibrium value
the system, we will simulate the coupling of the scalar fie
f to the thermal bath using a generalized Langevin equat

]2f

]t2 5¹2f2h
]f

]t
2

]V0

]f
1j~x,t !, ~10!

where the viscosity coefficienth, set equal to unity in all
simulations, is related to the stochastic force of zero m
j(x,t) by the fluctuation-dissipation relation,

^j~x,t !j~x8,t8!&52hud~x2x8!d~ t2t8!. ~11!

The system is discretized and put on a square lattice w
side length,L, equal to 64 for all the simulations, but sever
lattice spacings,dx, and time steps,dt, are used. Fordx
51.0, 0.8, and 0.2 the respective time steps aredt50.2, 0.1,
and 0.02. We have, of course, checked the stability of
program for these choices of lattice parameters. Using a s
dard second-order staggered leapfrog method~which is sec-
ond order in both space and time! we can write,

ḟ i ,m11/2

5

S 12
1

2
hdt D ḟ i ,m21/21dt~¹2f i ,m2V08~f i ,m!1j i ,m!

11
1

2
hdt

f i ,m115f i ,m1dtḟ i ,m11/2 ~12!

wherei indices are spatial andm indices temporal, overdot
represent derivatives with respect tot and primes with re-
spect tof. The discretized fluctuation-dissipation relatio
now reads

^j i ,mj j ,n&52hu
d i , j

dx2

dm,n

dt
, ~13!

so that

j i ,m5A 2hu

dx2dt
Gi ,m , ~14!

whereGi ,m is taken from a zero-mean unit-variance Gau
ian.
e
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B. Results from bare lattice simulations

Keeping the system always at the critical temperatureuc ,
we are interested in its behavior as the free-energy ba
between the two equilibrium phases is changed. We w
measure the value of the ensemble-averaged and a
averaged order parameter^f&A(t)[1/A*d2xf(x,t) for sev-
eral choices of the lattice spacingdx, taking note of its final

equilibrium value,f̄eq. In Fig. 1 we show the results fo
^f&A(t) for several choices of lattice spacing anda50.45.
The dependence on lattice spacing is quite evident; diffe
lattices produce different physics.

In Fig. 2, we show the phase diagram depicting ph
mixing as a function ofa for different choices of the lattice
spacingdx. The phase diagram is constructed by defining
‘‘phase-mixing order parameter,’’

df~a![uf̄eq2fmaxu/fmax, ~15!

wherefmax5auc/3l is the location of the maximum of the
free energy density separating the two phases. Clearly, aa
decreases, the free-energy barrier decreases and la
amplitude fluctuations between the two phases become m

probable. Below a critical valueac , f̄eq just tracks the lo-
cation of the maximum, indicating complete phase mixin
or the breakdown of the mean field theory of Eq.~1!.

The problem, though, is that phase mixing, or the bre
down of mean-field theory, occurs for values ofac , which
are strongly dependent on the value ofdx, as can be seen
from Fig. 2. For the range ofdx investigated, 0.2<dx<1,
we obtained 0.355&ac&0.40. In the next section, we argu
that this dependence can be effectively cured by includ
proper counterterms to the lattice potential.

FIG. 1. ^f̃&A( t̃ ) for the bare potential, for several choices

lattice spacing, forã50.45.
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IV. APPROACHING THE CONTINUUM ON THE LATTICE

A. Computing the lattice effective potential

Setting up a continuum system on a lattice introduces
artificial length scales, the ultraviolet momentum cutoffL
5p/dx and the infrared momentum cutoffLL5p/L, where
L is the lattice size. In the continuum limit,L→`, anddx
→0 or, equivalently, the number of degrees of freedomN
5(L/dx)d→`. The coupling to the thermal bath induce
fluctuations at all allowed length scales. We should thus
pect that the lattice simulation is related to a continu
model with both infrared and ultraviolet cutoffs. In order
obtain the lattice effective potential, we start by analyzi
the divergences of the related continuous model.

For classical field theories in two dimensions, the cor
sponding 1-loop corrected effective potential is given by

V1 L~f!5V0~f!1
T

2ELL

L d2p

~2p!2 ln~p21V09!1counterterms,

~16!

where the primes denote derivatives with respect tof. Per-
forming the integration and making all variables dimensio
less we obtain,

V1 L~f!5V0~f!1
u

8p
V09F12 lnS LL

21V09

L2 D G
2

u

8p
LL

2 ln~LL
21V09!1Bf21constants.

~17!

The infrared cutoff does not introduce a divergence asLL
→0, but it does introduce finite corrections toV1 L , or finite
size effects, which become small asL increases. These be
come more severe near criticality, but well-known scali

FIG. 2. Phase diagram for the bare potential for various lat
spacings.
o

x-

-

-

behavior can be used to regulate this dependence@12#. As we
will further argue below, for our purposes we can safely
LL50. This is not the case for the ultraviolet cutoff. Th
reader can see now why it is useful to use the shifted po
tial of Eq. ~5! as opposed to the original one of Eq.~2!: all
divergences are quadratic inf, simplifying the computations
considerably, while the physical results, of course, rem
unchanged. This is why we added only the countertermBf2

above.
The countertermB is computed by imposing the reno

malization condition

V1L9 ~fRN!5V09~fRN!5M2, ~18!

whereM is the arbitrary renormalization scale and we wr
fRN[A(M21m2)/3l. @Note thatM here is dimensionless
~tilde is dropped!, being defined asM̃5M /T2.# One obtains,

B~M !5
u

16p FV0-8lnS V09

L2D 1
~V0-!2

V09
G

f5fRN

. ~19!

Applying this to the shifted potential of Eq.~5!, we ob-
tain, for the 1-loop renormalized continuum potential,

V1L
M ~f!5F2

1

2
m21

9lu

8p
1

3lum2

4pM2 Gf21
l

4
f41Af

2
3lu

8p
f2 lnS 2m213lf2

M2 D
1

m2u

8p
ln~2m213lf2!1constants. ~20!

Recall that atuc the linear term proportional toA(u) van-
ishes. Since the counterterm cancels the dependence o
ultraviolet cutoff, we define the lattice effective potential
@6#

Vlatt~f!5V0~f!1B~M !f2. ~21!

In Fig. 3 we show the results of repeating the simulations
Fig. 1 but now adding the counterterm to the lattice simu
tions following Eq. ~21!. The addition of the counterterm
practically eliminates the lattice-spacing dependence of
results. Figure 3 also shows the near elimination of latti
spacing dependence fora50.40.

B. Extracting the critical value of the order parameter

In Figs. 4 and 5, we show the phase diagrams usingdf
defined in Eq.~15! as a function ofa for different choices of
lattice spacingdx. These are to be compared with Fig.
Figure 4 is for a choice of renormalization scaleM51, while
Fig. 5 is for M510. It is clear that the results for differen
lattice spacings converge around one value ofac .

We computeac as follows: for a given value ofa we
perform several (i max) measurements off̄eq by varying the
lattice spacing, which we callf̄eq

i (a). Their average is sim-

ply ^f̄eq(a)&5@(1
i maxf̄eq

i (a)#/ i max, while the departure from

e
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the average for each measurement is,Df̄eq
i

5uf̄eq
i 2^f̄eq&u/^f̄eq&.

Near criticality, the results are naturally poorer due to
existence of long-range correlations in the field. We can
this fact to our advantage, since we expect that, at critica
the departure from the average defined above is maximi
that is, the quantity

^Dfeq~a!&[
(

1

i max

Df̄eq
i

i max
, ~22!

FIG. 3. ^f̃&A( t̃ ) with the counterterm added andM̃51, for

several choices of lattice spacing, forã50.45 andã50.40.

FIG. 4. Phase diagram forM̃51.
e
e

y,
d,

reaches a maximum atac . This can be clearly seen from
Fig. 6 for the same choices of lattice spacings~or coarse-
graining scales! as in Figs. 4 and 5. The measured value
ac is now ac.0.36560.005, for M51, and ac.0.435
60.005 forM510.

We have thus achieved lattice-spacing independence
the measurement ofac . Clearly, the error inac could be
further decreased by taking a larger number of measurem
of f̄eq

i . However, since our main goal here is to show t
convergence of the results for different lattice spacings,
are not concerned with very high-accuracy measureme
Nevertheless, the values forac still depend on the renormal
ization scale, which is arbitrary. In the next subsection,
show how to obtain lattice results that are independent ofM.

C. Achieving independence of renormalization scale
on the lattice

As with conventional renormalization theory, the reno
malized potential should not depend on the choice of ren
malization scale@13#. One usually solves the renormalizatio
group equations to find how the couplings vary with t
scale. Here, we propose a simpler approach that works q
well on the lattice implementation of scalar field theories.
is an interesting question how to generalize it to more co
plex models.

Consider the 1-loop renormalized potentialV1 L
M (f) as

given in Eq.~20!. The superscriptM is a reminder that this
potential is renormalized at a given scaleM. Now consider
an equivalent potential renormalized at another scaleM 8,

V1 L
M8(f). Since the divergences are quadratic, this poten

has a shifted massm82. By imposing that the two potential

are identical,V1 L
M (f)5V1 L

M8(f), we obtain a condition on
the shifted massm82, approximating ln(2m8213lM8)
.ln(2m213lM),

FIG. 5. Phase diagram forM̃510.
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m82.m21
3lu

4p
lnS M 82

M2 D 2
3lum2

2p F 1

M2
2

1

M 82G .

~23!

Thus, we can always relate a theory with a choice ofM to
any other theory withM 8 by redefining the massm2 accord-
ing to Eq. ~23!. We claim that this is also the case for th
lattice effective potential.

As an illustration, we show the phase diagram forM 8
510 in Fig. 7, where the results forM 8510 were obtained
after scalingm2 according to Eq.~23! in the lattice potential
of Eq. ~21!. It is practically indistinguishable from the phas
diagram forM51 shown in Fig. 4. Figure 8 demonstrat
clearly thatM 8510 has the identicalac previously found for
M51, within our level of accuracy. This is in stark contra
to Fig. 6, where the values ofac for M51 andM510 were
very different, as evidenced by its ‘‘twin peaks’’ structure

V. SUMMARY AND OUTLOOK

We have investigated the continuum limit of lattice sim
lations of stochastic scalar field theories. In particular,
have proposed a method to obtain not only lattice-spac
independent results, but also results independent of
renormalization scale of the lattice effective potential. W
illustrated our approach by examining a Ginzburg-Land
model which exhibits phase mixing depending on the val
of the parameters controlling the free-energy barrier
large-amplitude fluctuations between the two lo
temperature phases in our model. Thermal fluctuations of
order parameter are induced by coupling it to a thermal b
at fixed temperatureTc , defined as the temperature whe
the two phases have the same free energy density. We s
late the dynamics using a generalized Langevin equa
with Gaussian noise, which brings the system to its fi
equilibrium state.

FIG. 6. ^Dfeq(ã)& for M̃51 and M̃510, with the respective

ãc’s at the maxima.
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The results were presented in terms of phase diagr
which clearly illustrate the effectiveness of our approach. W
also proposed a simple way of determining the critical va
of the control parameter for phase mixing, which uses
spread in values of the equilibrium order parameter aro
criticality for different choices of lattice spacing~or coarse-
graining scales!. Thus, we effectively turn a weakness
lattice simulations into a strength, something that can be u
ful for the examination of critical phenomena of continuo
field theories in fairly small lattices.

We plan to expand the present study to investigate
effects of spatio-temporal memory on the dynamics of n

FIG. 7. Phase diagram forM̃ 8510.

FIG. 8. ^Dfeq(ã)& for M̃51 and M̃ 8510 showing the same

value of ãc .
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equilibrium fields. Recent results have shown that the eff
tive Langevin equation for self-coupled scalar systems
hibits colored and multiplicative noise@14#. It is possible to
expand the two-point function characterizing the noise~or
noises! in terms of a ‘‘persistence factor,’’ which define
short or long-term memory, spatial, temporal, or both. T
possible impact of this kind of noise on the nonequilibriu
dynamics of fields remains largely unexplored.
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